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 +  = (1 + ηµ ) , 

with the dispersion parameter, , to be estimated.  The magnitude of η  may be interpreted as follows 

(after Cameron and Trivedi, 1998, p. 79): 

 = 0 implies no overdispersion; 

 implies a modest degree of overdispersion; and, 

Initial data analysis.  The rareness of exceedances suggests that these data may be described by a 

Poisson model.  One feature of a Poisson random variable is that its mean, µ , and its variance are equal 

(equidispersion), a property frequently violated by real world data.  "Failure of the Poisson assumption of 

equidispersion has similar qualitative consequences to failure of the assumption of homoskedasticity" 

associated with the Gaussian distribution (Cameron and Trivedi, 1998, p. 77).  The standard way of 

accommodating overdispersion (the presence of more variation than is expected for a Poisson random 

variable) is by replacing a Poisson random variable with a negative binomial random variable—which can 

be viewed as a gamma mixture of Poisson random variables.  In doing so, the distribution of counts is 

viewed as either (1) having missing variables for the mean specification, or (2) being dependent (i.e., the 

occurrence of an event increases the probability of further events occurring).  The most popular 

implementation of the negative binomial probability model specifies the variance as being quadratic in the 

mean, or 
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Test Only Data  
 

Description of sample.  A total of 4,316 samples were collected, of which 10 have no geographic labels.  

The total number of samples with a value that exceeds the threshold level is 21.  These sample asbestos 

measurements were aggregated by location into 45 statistical summary areas (SSAs) for lower Manhattan 

(south of Canal Street).  One of these SSAs is the site that housed the WTC; no data were collected for 

this plus an additional 8 SSAs. 
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In other words, if 0 
µ

<η
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≤ , a spatial analyst may consider overdispersion detected in georeferenced 

data to be inconsequential, with little to be gained by replacing a Poisson with a negative binomial model 

specification.  Meanwhile, recognizing that these exceedances are constrained by the number of samples 

collected suggests that these data may be described by a binomial model.  Recoding counts of 
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exceedances to a binary (0-1) presence/absence measurement suggests that these data may be described 

by a logistic model.  Simple estimation results for each of these four models appear in Table D-1.  

 

Table D-1.  Selected model estimation results. 

Model intercept equidispersion 

Poisson -5.3232 NA 

Negative binomial -5.0964 4.6066 

Binomial -5.3183 NA 

Logistic  1.4213 NA 

 

 

One important implication from the tabulated results appearing in Table D-1 is that a Poisson model 

description of rates may suffer from a marked violation of the equidispersion assumption.  The following 

evidence supports this claim: 

 

≈= 58333.0
2

ˆ
2
µ

3.42857 < 4.6066. 

 

In other words, the mean and variance may not be constant across the 36 SSAs. 

 

Accounting for spatial autocorrelation.  A conventional spatial autocorrelation analysis is hindered by 

two features of the collected data.  One is the rareness of exceedance.  In order to further explore spatial 

dependency in this context, average measures of asbestos also were analyzed.  The other drawback is the 

absence of data for 9 SSAs.  Because these areal units are dispersed across the study region, computing a 

Moran Coefficient (MC) becomes problematic. 

 

MC scatterplots appear in Figure D-1.  No conspicuous geographic pattern is apparent for either rates 

or averages, in part because of the presence of a large number of zeroes. 
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Figure D-1.  Left: MC scatterplot for the rate of exceedance.  Right: MC scatterplot for the average 

measure of asbestos. 

 

Latent map patterns also can be assessed with eigenvectors derivable from a MC.  Here four of the 

11 eigenvectors (E1, E8, E10, E22; these were selected using the stepwise options for PROC LOGISTIC in 

SAS, and SWPOIS in STATA) denoting consequential positive spatial autocorrelation help describe the 

geographic distribution of exceedance rates.  Maps of these synthetic geographic variables appear in 

Figure D-2. 
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Figure D-2.  Geographic distribution of relevant eigenvectors.  Top left: E1.  Top right: E8.  Bottom left: 

E10.  Bottom right: E22. 
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The MC values for the four eigenvectors range from 0.37 to 0.97.  Estimation results that include 

these eigenvectors in the specifications of each of the four models appearing in Table D-1 are reported in 

Table D-2.  The Poisson model with an assumption of equidispersion appears to be reasonable here.  This 

specification accounts for nearly 60% of the variation in the geographic distribution of rates.  The 

binomial model specification accounts for about 30%.  The logistic model description seems 

inappropriate. 

 

 

Table D-2.  Selected model estimation results when spatial dependence is included. 

Model intercept equidispersion E1 E8 E10 E22 

Poisson -6.0625 NA 4.6209 -9.2072 3.9665 NA 

Negative binomial -6.1506 0.4476 3.8439 -8.9830 4.5748 NA 

Binomial -6.0572 NA 4.6680 -9.3192 3.9896 NA 

Logistic 2.0052 NA NA NA -9.3199 -6.6709 

One important finding that can be gleaned from Table D-2 is detected overdispersion accompanying 

the simple Poisson model description principally is attributable to latent spatial autocorrelation (0.4476 

<< 8571.0
58333.0

5.0 ≈ ).  Accordingly, these data can be well described with a Poisson model when the 

model specification captures spatial dependencies. 

 

Pairwise comparisons between SSAs.  Pairwise comparisons of SSA asbestos exceedance sampling 

results were made to assess whether or not statistically significant differences exist.  Aggregate sample 

sizes less than 30 are considered too unreliable, and were not included in this assessment.  The outcome 

of this sample size restriction is 22 SSAs with a sufficient number of samples, allowing (22×21/2=) 

231 pairwise comparisons. 

 

Pairwise comparisons statistical theory.  The rareness of exceedances suggests that an analysis of 

differences of means cannot easily be based upon a binomial model.  For a normal approximation to be 

reasonable here, each SSA sample would need to satisfy the constraint of 

 

(sample size) ×  (exceedance rate) > 5. 

 

Although both the binomial and the Poisson regression models produce very similar descriptive results 

for the lower Manhattan asbestos data, the Poisson model seems to furnish a better model-based 

inferential basis. 

 



When multiple comparisons are being made, the overall level of significance often should be adjusted 

downward to compensate for an increase in chance null hypothesis rejections (i.e., Type I errors).  For 

example, in the single WTC asbestos study for which 231 difference of means null hypotheses are being 

evaluated, each hypothesis with a single test, setting the global Type I error probability at α=0.05 means 

that at least one in twenty of the hypotheses tested will turn up significant, merely due to chance 

fluctuation.  In other words, there is a very good chance of finding at least one test (and as many as 11 or 

12) to be statistically significant solely due to sampling variability, incorrectly concluding that a 

difference exists in the population.  The Bonferroni correction/adjustment is the most basic procedure for 

modifying  to compensate for this increase in Type I error probability.  When the samples are 

independent, the modification becomes .  For the WTC study, and a two-tailed test, this 

becomes  for an overall α=0.01, 
231
025.0

 for an overall α=0.05, and 
231

05.0
 for an overall α=0.10.  

As correlation between the samples increases, the denominator of this adjustment effectively decreases 

toward 1.  Uncorrelated variables require a full Bonferroni adjustment, perfectly correlated variables 

require no adjustment, and partially correlated variables required an adjustment between these two 

extremes. 

Consider the difference between two Poisson random variables with means µ  and µ .  

Mathematical statistical theory states that the expected value of the difference of any two random 

variables equals the difference of their expected values.  Therefore, the difference of means for two 

Poisson random variables equals .  If these two Poisson random variables are independent, then 

their difference has a known statistical distribution (Skellam, 1946).  The respective sampling variance of 

each is 

2

21 µ−µ

1

1

n
µ

 and 
2

2

n
µ

; the sampling variance of their difference is , which parallels a standard 

result for normal curve theory.  As the two means, µ  and , increase to infinity, the distribution of the 

difference of these two independent Poisson variables rapidly converges to normality.  Convergence on a 

normal probability distribution is quick, with a very good approximation attained once µ >4 and 1 2µ >4.  

But for small values of  and/or µ  this normal approximation is poor.  In these latter cases, the 

difference of two Poisson random variables still tends to conform to a Poisson distribution. 

1µ 2
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Differences of exceedance rates.  The estimated spatially filtered Poisson model produces sample mean 

estimates for uncorrelated Poisson variables.  These models include LN (# of cases) as an offset variable.  

Therefore, dividing both sides of the estimated equation for iµ̂  (i.e., the mean rate for areal unit i) by the 



corresponding number of samples yields the set of estimated rates, assuming an underlying Poisson 

process, of , i=1, 2, …, 22.  The accompanying set of null hypotheses becomes 
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 = -0.00000 + 1.00031  + e , R2 = 1.00. 
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 = -0.00000 + 1.00012  + e , R2 = 1.00, and 

The estimated standard error for this difference of rates test is given by . 

A simulation experiment involving 50,000 difference of means replications (total=231×50,000) was 

conducted using the spatially filtered Poisson model estimation results.  The simulated Poisson random 

variable, Y, then was used in a bivariate linear regression analysis, which yielded 
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In both cases, the intercept is not significantly different from 0, and the slope is not significantly different 

from 1.  These simulations confirmed the preceding theoretical results. 

 

The model-based mean estimates range from roughly 0.01 to 7.22, implying that most all of the difference 

of rates sampling distributions should be non-normal.  Each simulated dataset was subjected to a 

diagnostic Kolmogorov-Smirnov goodness-of-fit test for a normal distribution, producing test statistics 

ranging from roughly 0.48 to 0.53.  In other words, the simulated sampling distributions fail to conform to 

normal distributions.  Consequently, the pairwise difference of rates assessments are based upon a Hope-

type nonparametric simulation analysis, involving 99,999 replications coupled with each observed 

difference.  The simulated distribution is based on a pair of Poisson random variables, each with the same 

mean of 
21
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nn2
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, which yields a null hypothesis difference of 0 and the correct theoretical variance 

of 
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.  Because a two-tailed test is employed here, an observed rank of 1-2 or 99,999-100,000 



results in a rejection of the null hypothesis for α=0.01, an observed rank of 3-12 or 99,990-99,998 results 

in a rejection of the null hypothesis for α=0.05, and an observed rank of 12-22 or 99,979-99,989 results 

in a rejection of the null hypothesis for α=0.10.  Based on these criteria, 21 pairs of exceedance rates are 

significantly different at the 10% level, 17 pairs are significantly different at the 5% level, and 48 pairs 

are significantly different at the 1% level.  Basically, roughly 37% of the extreme MCGB mean pairs tend 

to be significantly different.  These differences arise from four clusters of mean sizes.  The first is 

dominated by the largest MCBG mean of roughly 9 (MCBG 10015022).  The second is dominated by the 

second and third largest means of approximately 2-3 (MCBG 10008002, MCBG 10015021).  The third is 

dominated by the medium mean of approximately 1.5 (MCBG 10015012).  The fourth group is 

dominated by the relatively small mean of roughly 0.1 (MCBG 10317019D).  Significant pairwise 

contrasts appear in Tables D-3a and D-3b, and Figure D-3. 
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These results need to be moderated by keeping in mind that the estimated Poisson model accounts for 

only about 50% of the variance in the observed exceedances. 
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Figure D-3.  Significant differences between estimated exceedance rates for test only data, 
with Statistical Summary Areas labeled.  Estimates are based on the spatially-filtered 
Poisson model (see Section 3.2.3.2 and Appendix D for details).  The number of 
significant pairwise comparisons at an experiment-wise α = 0.01 (with a Bonferroni 
adjustment) are shown for SSAs that had one or more exceedances.  Comparisons with 
SSAs with sample sizes less than 30 (indicated in figure by cross-hatching, and in figure 
legend by “n<30”) were deemed unreliable and were therefore not included in the 
analysis.  The 3 SSAs that were found to have the most number of significant comparisons 
are located east of the WTC.  The numbers of exceedances for these three SSAs range 
from 2 to 9; their exceedance rates range from 0.021 to 0.060.  The spatial pattern 
exhibited above is similar to the pattern of exceedance rates that is shown in Figure 3-13 
however, 4 of the 7 SSAs with exceedance rates in the 4th quartile (Figure 3-13) were 
found to be significantly different from 5 or fewer of the other SSAs.   
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Table D-3a.  Test only SSAs pairs having significant pairwise comparisons 
of exceedance rates. 

Significantly different means at the α=0.10 level 
10008002 10015011 10015011 10033001B 
10008002 10039004 10015011 10033001A 
10015011 10039001A 10033003B 10033001A 
10015011 10033002B 10033002B 10033001A 

Significantly different means at the α=0.05 level 
10007002 10015012 10015011 10039004 
10008002 10021001 10015011 10039001B 
10013002 10015011 10015011 10033003B 
10013003 10015011 10015011 10317019A 

Significantly different means at the α=0.01 level 
10007002 10015022 10015012 10027001 
10008002 10013002 10015012 10039004 
10008002 10013003 10015012 10039001B 
10008002 10015022 10015012 10039001A 
10008002 10021002 10015012 10033003B 
10008002 10039001B 10015012 10033002B 
10008002 10039001A 10015012 10033001B 
10008002 10033003B 10015012 10033001A 
10008002 10033002B 10015012 10317019A 
10008002 10033001B 10015012 10317019C 
10008002 10033001A 10015012 10317019D 
10008002 10317019A 10015021 10015022 
10008002 10317019C 10015022 10021001 
10008002 10317019D 10015022 10021002 
10013002 10015012 10015022 10025001 
10013002 10015022 10015022 10027001 
10013003 10015012 10015022 10039004 
10013003 10015022 10015022 10039001B 
10015011 10015012 10015022 10039001A 
10015011 10015022 10015022 10033003B 
10015011 10021002 10015022 10033002B 
10015011 10317019C 10015022 10033001B 
10015011 10317019D 10015022 10033001A 
10015012 10015021 10015022 10317019A 
10015012 10021001 10015022 10317019C 
10015012 10021002 10015022 10317019D 
aSee figure D-3 for a map of the statistical summary areas (SSAs). 
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Table D-3b.  Distribution of significant difference of means by MCBG, Test Only 
MCBG Number of 

significant 
differences 

MCBG Number of 
significant 
differences 

10007002 2 10021002 4 
10008002 19 10025001 3 
10008003 2 10027001 5 
10009001 1 10033001A 5 
10013002 4 10033002B 8 
10013003 8 10033003B 5 
10015011 5 10039001A 5 
10015012 17 10039001B 6 
10015021 17 10317019A 9 
10015022 21 10317019C 8 
10021001 4 10317019D 14 
aSee figure D-3 for a map of the statistical summary areas (SSAs). 

 
 
 



 + =(1 + )µ , 

with the dispersion parameter, , to be estimated.  The magnitude of η  may be interpreted as follows 

(after Cameron and Trivedi, 1998, p. 79): 

 = 0 implies no overdispersion; 

 implies a modest degree of overdispersion; and, 

Initial data analysis.  The rareness of exceedances suggests that these data may be described by a 

Poisson model.  One feature of a Poisson random variable is that its mean, µ , and its variance are equal 

(equidispersion), a property frequently violated by real world data.  "Failure of the Poisson assumption of 

equidispersion has similar qualitative consequences to failure of the assumption of homoskedasticity" 

associated with the Gaussian distribution (Cameron and Trivedi, 1998, p. 77).  The standard way of 

accommodating overdispersion (the presence of more variation than is expected for a Poisson random 

variable) is by replacing a Poisson random variable with a negative binomial random variable—which can 

be viewed as a gamma mixture of Poisson random variables.  In doing so, the distribution of counts is 

viewed as either (1) having missing variables for the mean specification, or (2) being dependent (i.e., the 

occurrence of an event increases the probability of further events occurring).  The most popular 

implementation of the negative binomial probability model specifies the variance as being quadratic in the 

mean, or 
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Clean and Test Data 
 

Description of sample.  A total of 24,375 samples were collected, of which 17 have no geographic 

labels.  The total number of samples with a value that exceeds the threshold level is 102.  These sample 

asbestos measurements were aggregated by location into 45 statistical summary areas (SSAs) for lower 

Manhattan (south of Canal Street).  One of these SSAs is the site that housed the WTC; no data were 

collected for this plus an additional 6 SSAs. 
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In other words, if 0 
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≤ , a spatial analyst may consider overdispersion detected in georeferenced 

data to be inconsequential, with little to be gained by replacing a Poisson with a negative binomial model 

specification.  Meanwhile, recognizing that these exceedances are constrained by the number of samples 

collected suggests that these data may be described by a binomial model.  Recoding counts of 
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exceedances to a binary (0-1) presence/absence measurement suggests that these data may be described 

by a logistic model.  Simple estimation results for each of these four models appear in Table D-4. 

 

Table D-4.  Selected constant mean model estimation results for rates. 

Model intercept equidispersion 

Poisson for rates -5.4756 NA 

Negative binomial for rates -5.2098 2.8692 

Binomial -5.4713 NA 

Logistic  0.3185 NA 

NOTE: rates were modeled by including the log of the number of cases as an offset variable. 

 

 

One important implication from the tabulated results appearing in Table D-4 is that a Poisson model 

description of rates may suffer from a dramatic violation of the equidispersion assumption.  The following 

evidence supports this claim: 

 

≈= 68421.2
2

ˆ
2
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0.74510 << 2.8692. 

 

In other words, the mean and variance may not be constant across the 38 SSAs. 

 

Accounting for spatial autocorrelation.  A conventional spatial autocorrelation analysis is hindered by 

two features of the collected data.  One is the rareness of exceedance.  In order to further explore spatial 

dependency in this context, average measures of asbestos also were analyzed.  Both the rates and the 

average measures were transformed, using a logarithmic (i.e., Box-Cox 0 power) transformation with a 

translation parameter, to better conform to a bell-shaped curve (see Figure D-4).  The other drawback is 

the absence of data for 7 SSAs.  Because these areal units are dispersed across the study region, 

computing a Moran Coefficient (MC) becomes problematic. 

 

MC scatterplots appear in Figure D-5.  A conspicuous geographic pattern of positive spatial 

autocorrelation is apparent for the averages, and a possible positive spatial autocorrelation pattern may be 

present for the rates.  Both patterns are corrupted by the presence of a number of zeroes. 
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Figure D-4.  Left:  quantile plot for LN( asbestos  + 0.004).  Right: quantile plot for LN(rate + 0.0001). 

 

 

 

 

Figure D-5.  Left: MC scatterplot for the rate of exceedance.  Right: MC scatterplot for the average 

measure of asbestos. 

 

Latent map patterns also can be assessed with eigenvectors derivable from a MC.  Here five of the 

11eigenvectors (E2, E3, E8, E17, E22; these were selected using the stepwise options for PROC LOGISTIC 

in SAS, and SWPOIS in STATA) denoting consequential positive spatial autocorrelation help describe 

the geographic distribution of exceedance rates for the Poisson and binomial models.  The negative 

binomial model failed to be estimable, yielding a negative maximum likelihood estimate for dispersion; 

but, the deviance measure for the estimated Poisson model is 1.36, suggesting a lack of serious 

overdispersion.  One eigenvector (E10) relates to the logistic version of the variable.  Maps of three of the 

five synthetic geographic variables appear in Figure D-6. 

 

The MC values for the five eigenvectors range from 0.38 to 0.93.  Estimation results that include 

these eigenvectors in the specifications of each of the four models appearing in Table D-4 are reported in 

Table D-5.  The Poisson model with an assumption of equidispersion appears to be reasonable here.  This 
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specification accounts for roughly 40% of the variation in the geographic distribution of rates.  The 

binomial model specification renders very similar results.  The logistic model description seems 

inappropriate. 

 

One important finding that can be gleaned from Table D-2 is even detected modest overdispersion 

accompanying the Poisson model description largely is attributable to latent spatial autocorrelation. 

 

 

Table D-5.  Selected model estimation results for rates when spatial dependence is included. 

Variable Poisson model Negative binomial model Binomial model Logistic model 

intercept -5.9383 -5.9347  0.2773 

equidispersion NA NA NA 

E2 -4.2422 -4.2812 NA 

E3  4.4056  4.4575 NA 

E8 -5.4424 -5.5115 NA 

E10 NA NA -4.4191 

E17 -2.2640 -2.2961 NA 

E22  4.2200 

 

 

 

Failed to be estimable 

4.2615 NA 
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Figure D-6.  Geographic distribution of relevant eigenvectors.  Top left: E2.  Top right: E3.  Bottom left: 

E17. 

 

 

Pairwise comparisons between SSAs.  Pairwise comparisons of SSA asbestos exceedance sampling 

results were made to assess whether or not statistically significant differences exist.  Aggregate sample 

sizes less than 30 are considered too unreliable, and were not included in this assessment.  The outcome 

of this sample size restriction is 32 SSAs with a sufficient number of samples, allowing (31×30/2=) 

465 pairwise comparison. 

 

Differences of exceedance rates.  The estimated spatially filtered Poisson model produces sample mean 

estimates for uncorrelated Poisson variables.  These models include LN(# of cases) as an offset variable.  

Therefore, dividing both sides of the estimated equation for iµ̂  (i.e., the mean rate for areal unit i) by the 



corresponding number of samples yields the set of estimated rates, assuming an underlying Poisson 

process, of , i=1, 2, …, 31.  The accompanying set of null hypotheses becomes 

 2
j

j
2
i

i

n

ˆ

n
ˆ µ

+
µ

 = 0.00001 + 0.99873  + e , R2 = 1.00. 
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The estimated standard error for this difference of rates test is given by . 

A simulation experiment involving 50,000 difference of means replications (total=496×50,000) was 

conducted using the spatially filtered Poisson model estimation results.  The simulated Poisson random 

variable, Y, then was used in a bivariate linear regression analysis, which yielded 
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In the second case, the intercept is significantly different from 0, and in both cases the slope is 

significantly different from 1.  These may well be size effect results, since substantively both intercepts 

effectively are zero, and both slopes effectively are 1. 

 

The model-based mean estimates range from roughly 0.10 to 32.60, implying that at least some of the 

difference of rates sampling distributions should be non-normal.  Each simulated dataset was subjected to 

a diagnostic Kolmogorov-Smirnov goodness-of-fit test for a normal distribution, producing test statistics 

ranging from roughly 0.01 to 0.35.  In other words, the simulated sampling distributions fail to conform to 

normal distributions.  Consequently, the pairwise difference of rates assessments are based upon a Hope-

type nonparametric simulation analysis, involving 99,999 replications coupled with each observed 

difference.  The simulated distribution is based on a pair of Poisson random variables, each with the same 

mean of 
21

1221

nn2
nn µ+µ

, which yields a null hypothesis difference of 0 and the correct theoretical variance 



of .  Because a two-tailed test is employed here, an observed rank of 1 or 100,000 results in a 

rejection of the null hypothesis for =0.01, an observed rank of 2-5 or 99,996-99,999 results in a 

rejection of the null hypothesis for =0.05, and an observed rank of 6-11 or 99,990-99,995 results in a 

rejection of the null hypothesis for =0.10.  Based on these criteria, six pairs of exceedance rates are 

significantly different at the 10% level, 14 pairs are significantly different at the 5% level, and 122 pairs 

are significantly different at the 1% level.  Basically, roughly 33% of the extreme MCGB mean pairs tend 

to be significantly different.  These differences arise from four clusters of mean sizes.  The first is the 

extreme MCBG mean of nearly 33 (MCBG 10015022).  The second is the third largest mean of 

approximately 16 (MCBG 10015012).  The third is the somewhat small mean of 0.64 (MCBG 10016004) 

which more than likely is being amplified by its small sample size of 32.  The remaining 28 MCGBs form 

a set whose sample-size-weighted absolute differences of means range from nearly 0 to almost 0.1.  

Primarily, significant differences are between the extremes within this group (see Tables D-6a and 6b, 

and Figure D-7). 

α

α

α
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These results need to be moderated by keeping in mind that the estimated Poisson model accounts for 

only about 50% of the variance in the observed exceedances. 
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Table D-6a.  SSAs pairs having significant pairwise comparisons of ratesa. 
Significantly different means at the α  = 0.10 level 

10009002 10027001 10015011 10033002A 10027001 10317019C 
10009002 10033003B 10015021 10317019C 10039004 10317019C 

Significantly different means at the α  = 0.05 level 
10007002 10009002 10013003 10027001 10021001 10317019C 
10008002 10021001 10021001 10021002 10027001 10039001A 
10009001 10027001 10021001 10025001 10033003B 10317019C 
10009002 10015021 10021001 10039001B 10039004 10033003B 
10013003 10021001 10021001 10039004   

Significantly different means at the α  = 0.01 level 
10007002 10009001 10015011 10021001 10015021 10021002 
10007002 10013002 10015011 10021002 10015021 10025001 
10007002 10015011 10015011 10025001 10015021 10039001B 
10007002 10015012 10015011 10027001 10015021 10039004 
10007002 10015022 10015011 10029002 10015021 10317019A 
10007002 10021002 10015011 10031001 10015021 10317019D 
10007002 10039004 10015011 10033001A 10015022 10016004 
10007002 10317019D 10015011 10033001B 10015022 10021001 
10008002 10015011 10015011 10033002B 10015022 10021002 
10008002 10015012 10015011 10033003A 10015022 10025001 
10008002 10015022 10015011 10033003B 10015022 10027001 
10008002 10027001 10015011 10039001A 10015022 10029002 
10008003 10015012 10015011 10039001B 10015022 10031001 
10008003 10015022 10015011 10039003 10015022 10033001A 
10009001 10015011 10015011 10039004 10015022 10033001B 
10009001 10015012 10015011 10317019A 10015022 10033002A 
10009001 10015021 10015011 10317019C 10015022 10033002B 
10009001 10015022 10015011 10317019D 10015022 10033003A 
10009001 10021001 10015012 10015021 10015022 10033003B 
10009001 10033003B 10015012 10015022 10015022 10039001A 
10009001 10317019C 10015012 10016004 10015022 10039001B 
10009002 10015011 10015012 10021001 10015022 10039003 
10009002 10015012 10015012 10021002 10015022 10039004 
10009002 10015022 10015012 10025001 10015022 10317019A 
10009002 10021001 10015012 10027001 10015022 10317019C 
10009002 10317019C 10015012 10029002 10015022 10317019D 
10013002 10015011 10015012 10031001 10021001 10039001A 
10013002 10015012 10015012 10033001A 10021001 10317019A 
10013002 10015021 10015012 10033001B 10021001 10317019D 
10013002 10015022 10015012 10033002A 10021002 10027001 
10013002 10021001 10015012 10033002B 10021002 10033003B 
10013002 10027001 10015012 10033003A 10025001 10027001 
10013002 10033003B 10015012 10033003B 10027001 10039001B 
10013002 10317019C 10015012 10039001A 10027001 10039004 
10013003 10015011 10015012 10039001B 10027001 10317019A 
10013003 10015012 10015012 10039003 10027001 10317019D 
10013003 10015021 10015012 10039004 10033003B 10317019A 
10013003 10015022 10015012 10317019A 10033003B 10317019D 
10015011 10015012 10015012 10317019C 10039001B 10033003B 
10015011 10015021 10015012 10317019D 10317019C 10317019D 
10015011 10015022 10015021 10015022   
aSee Figure D-7 for a map of the statistical summary areas (SSAs). 
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Table D-6b.  Distribution of significant difference of means by 
MCBG, Clean & Test Data 

MCBG 
Number of 
Significant 
differences 

MCBG 
Number of 
Significant 
differences 

10007002 9 10029002 3
10008002 5 10031001 3
10008003 2 10033001A 3
10009001 9 10033001B 3
10009002 9 10033002A 3
10013002 9 10033002B 3
10013003 6 10033003A 3
10015011 28 10033003B 12
10015012 30 10039001A 5
10015021 14 10039001B 7
10015022 30 10039003 3
10016004 2 10039004 9
10021001 16 10317019A 7
10021002 8 10317019C 12
10025001 6 10317019D 9
10027001 16 
aSee Figure D-7 for a map of the statistical summary areas (SSAs). 

 
 

 

 

 

 

 

 

 

 

 

 

 



Draft Final Report 3/23/2004 
Page D-22 of 24 

APPENDIX D.doc 

Figure D-7.  Significant differences between estimated exceedance rates for clean 
and test data, with Statistical Summary Areas labeled.  Estimates are based on the 
spatially-filtered Poisson model (see Section 3.2.3.2 and Appendix D for details).  
The number of significant pairwise comparisons at an experiment-wise α = 0.01 
(with a Bonferroni adjustment) are shown for SSAs that had one or more 
exceedances.  Comparisons with SSAs with sample sizes less than 30 (indicated in 
figure by cross-hatching, and in figure legend by “n<30”) were deemed unreliable 
and were therefore not included in the analysis.  Three of the SSAs that were found 
to have the most number of significant comparisons are located east of the WTC.  
The numbers of exceedances for these three SSAs range from 17 to 32; their 
exceedance rates range from 0.006 to 0.059.  The spatial pattern exhibited above is 
similar to the pattern of exceedance rates that is shown in Figure 3–14 however, 
3 of the 9 SSAs with exceedance rates in the 4th quartile (Figure 3–14) were found 
to be significantly different from 4 or fewer of the other SSAs.  
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Clean and Test Data Subset 
 

Description of sample.  When sampling results for five intensively sampled buildings are removed from 

the clean and test dataset, a total of 17,905 samples remain, of which 17 have no geographic labels.  The 

total number of samples with a value that exceeds the threshold level is 92.  These sample asbestos 

measurements were aggregated by location into 45 modified census block groups (SSAs) for lower 

Manhattan.  One of these SSAs is the site that housed the WTC; the modified database contains no data 

for this plus an additional 7 SSAs. 

 

Initial data analysis.  Simple estimation results for each of the four models (i.e., Poisson, negative 

binomial, binomial and logistic) that parallel those for the complete dataset appear in Table D-7.  These 

results are very similar to those obtained with the complete dataset, too. 

 

Table D-7.  Selected constant mean model estimation results for rates. 

Model intercept equidispersion 

Poisson for rates -5.2701 NA 

Negative binomial for rates -5.1409 3.1819 

Binomial -5.2649 NA 

Logistic  0.4964 NA 

NOTE: rates were modeled by including the log of the number of cases as an offset variable. 

 

Accounting for spatial autocorrelation.  Identified prominent latent map patterns also are very similar 

(E3, E8, and E17 are common to the rates models; and again were selected using the stepwise options for 

PROC LOGISTIC in SAS, and SWPOIS in STATA).  One of the eigenvectors identified with the 

complete dataset disappears here (E2).  One model difference now is that the binomial model links to 

eigenvector E22, whereas the Poisson model links to eigenvector E27.  The negative binomial model 

yielded a dispersion parameter estimate of 0 here, making it indistinguishable from a Poisson model.  As 

before, the same single eigenvector (E10) relates to the logistic version of the variable. 

 

The Poisson model with an assumption of equidispersion appears to be reasonable here.  This 

specification accounts for roughly 40% of the variation in the geographic distribution of rates. 
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Table D-8.  Selected model estimation results for rates when spatial dependence is included. 

Variable Poisson model Negative binomial model Binomial model Logistic model 

intercept -5.8875 -5.8827 0.5075 

equidispersion NA NA NA 

E1 2.2292 2.2311 NA 

E3 4.1741  4.2493 NA 

E8  -3.4133 -3.4547 NA 

E10 NA NA -5.3629 

E17 -2.8619 -2.8848 NA 

E22 NA NA NA 

E27 -3.3557 

Failed to be estimable 

-3.4310 NA 

 

 


